458
浏览关键词: 极值风险;Copula函数;绿色金融
摘要: 本文运用基于极值分布的Copula-GARCH模型研究了我国绿色债券市场和绿色股票市场之间的关联特征及极值风险特征。研究结果显示,该模型能准确度量两者之间的负向相关结构,并能清晰刻画由绿色债券市场和绿色股票市场所构造的投资组合的在险价值,为我国绿色金融市场风险特征的发展提供了决策参考依据。
1. 引言
中国绿色金融作为引导资金流向绿能产业、应对气候变化和环境恶化、推进可持续发展的关键经济活动,对实现我国“30·60”双碳战略目标,加快构建清洁低碳循环发展经济具有重要的意义。在《关于构建绿色金融体系的指导意见》《关于加快建立健全绿色低碳循环发展经济体系的指导意见》和《关于深化生态保护补偿制度改革的意见》等战略部署下,我国绿色金融市场不断完善,绿色相关金融投资产品不断丰富,形成了包括绿色债券、绿色股票、绿色信贷、绿色基金、绿色保险及碳金融等各类绿色金融业务。其中,绿色债券市场与绿色股票市场的发展尤为突出。根据《中国绿色债券市场年度报告2021》显示,截至2021年底,我国在全球市场累计发行贴标绿色债券约2.1万亿人民币。而截至2021年底,我国已累计发布约80个绿色股票指数,主要包括可持续发展指数、环保产业指数及绿色环境指数等。两者的快速发展,对推进我国绿色金融市场的建设与完善起着重要的作用。因此,探究两者之间的关联特征以及两者所构造的投资组合风险特征,有助于具有绿色投资偏好的投资者进行合理的投资决策,有助于政府相关部门对绿色金融市场进行全面理解,以制定符合我国双碳战略目标的风险监管政策。
2. 文献综述
绿色债券作为绿色金融的一种创新金融工具,能够为企业提供环境保护必要的资金支持,引导更多资金流向环境友好项目,是建设生态文明的重要推动力。绿色股票是对债券、商业票据及贷款的补充,被贴绿色标签的公司最低要求是超过50%的收入和投资来自绿色活动,对于促进上市公司披露环境信息、引导社会资本进入环保领域、稳定资本市场运行具有显著作用。作为两种不同类型的金融工具,在信息化高度发展的今天,两者之间的信息传递速度越来越快,关联程度越来越紧密。因此,研究两者之间的关联效应及所构造投资组合的极值风险特征,对金融市场参与者而言,有利于进行合理的资产配置与风险规避。当前,国内外关于绿色债券和绿色金融的研究主要涉及关联特征及风险溢出效应等,而涉及两者的极值风险特征的文献则极为少见。例如Sinha等(2021) [1] 运用分位数回归和小波分解研究了绿色债券与环境社会治理(ESG)相关股票之间的关系,研究结果发现绿色债券融资对ESG股票具有逐渐增强的负向传递影响。陈晓莹(2020) [2] 运用MI-TVP-SV-VAR模型和DCC-MIDAS模型研究了绿色债券市场与绿色股票市场之间的动态关联效应,研究发现我国绿色股票市场与绿色债券市场之间具有时变关联效应,并且两者之间的交互影响具有滞后负向特征。而罗雄(2020) [3] 则运用DCC-GARCH模型研究了绿色债券市场和绿色股票市场之间的动态关联关系,并运用SVAR模型研究了两个市场之间的风险溢出效益,研究发现两者之间总体呈现一个负相关关系,且两者之间具有显著的双向风险溢出效应。敖蕊(2020) [4] 运用Copula函数研究了我国绿色债券市场和股票市场之间的联动关系,研究结果发现绿色债券市场与能源市场的相关关系总体不显著,但是在2020年3月,由于全球疫情的影响,两者之间具有显著的负向相关关系。王昊(2022) [5] 运用小波分析研究了我国绿色债券与绿色能源股票之间的联动效应,研究发现绿色债券与绿色能源之间缺乏关联性。Reboredo等(2022) [6] 运用Copula模型研究了绿色债券与低碳股票所构造的投资组合的期望短缺(ES)。研究发现绿色债券与低碳股票具有负向相关关系,因而其投资组合整体风险被降低了。
鉴于当前文献很少研究绿色债券和绿色股票之间的极值风险问题,本文将运用基于极值分布的Copula-GARCH模型分析我国绿色债券市场和绿色股票市场之间的关联特征,并进而分析两者所构造投资组合的在险价值(VaR),以探究我国绿色金融市场的风险特征,为促进我国绿色金融更好更长足发展提供决策建议。
3. 数据与模型
本文采用中债——中国绿色债券指数(GB)和中证财通中国可持续发展100(ESG)指数作为代理变量。样本数据为2016年1月4日到2022年5月31日的每日收盘价格。匹配同日交易数据后,共1557个样本观测值。数据来源于Wind数据库。考虑金融时间序列的平稳性要求,本文采用对数收益数据进行分析,记为 rg,t 和 rg,t 。
表1. 描述性统计量
注:***表示1%的显著性水平。
表1显示绿色债券指数的平均收益大于可持续发展100指数的平均收益,而前者的标准差却小于后者,这说明绿色债券市场的总体波动要比绿色股票市场低。JB统计量显示两个序列都显著拒绝了正态性假设,并且ADF结果表明两个序列都是平稳序列。ARCH检验显示序列具有显著的异方差性质。因此,本文将运用带有极值分布的ARMA-GARCH模型来拟合平稳的观测值序列,并进一步运用具有厚尾特征的t-copula模型拟合两者之间的相关结构。具体模型如下:
ARMA-GARCH模型:
本文的VaR计算,在Copula-GARCH模型的基础上采用蒙特卡洛模拟来实现。即,根据公式(6)、(7)、(8)求出模型参数,然后运用蒙特卡洛模拟方法得到m组 (u,v) ,将模拟出的 (u,v) ,带入公式(1)、(2)和(3),即可得到模拟的 (rg,re) ,然后按照等权重方法计算出投资组合的收益 rc ,然后累计分布函数F,并求出给定显著性水平q下的VaR。
4. 实证分析
根据GB指数和ESG指数的样本数据和公式(1)和(2),以及BIC准则,可得边际分布最优模型的参数估计如表2所示。
表2显示绿色债券指数的对数收益服从ARMA(1,1)-GARCH(1,1)模型,而可持续发展指数的对数收益服从AR(0)-GARCH(1,1)模型。即,绿色债券指数的对数收益不仅受到自身滞后一期值的影响,同时还受到滞后一期移动平均的影响;而可持续发展指数的对数收益没有自回归效应,仅受到异方差效应的影响。 rg,t 中残差t分布中的自由度小于 rg,t 残差t分布中的自由度,意味着可持续发展指数具有更高的峰度。 rg,t 的上尾GPD分布中的形状参数为正且显著,而 rg,t 的上尾GPD分布中的形状参数为正,但不显著。两者下尾GPD分布中的形状参数都为正值,且不显著。 rg,t 的上尾GPD尺度参数大于 rg,t 的GPD尺度参数,但是下尾却相反。根据表2模型的估计结果,可得到ARMA-GARCH模型的残差,进而通过分段分布函数求得模型的边际分布概率值。
表4. VaR
表4显示,由绿色债券指数和可持续发展100指数所构造的投资组合未来两个交易日在显著性水平为1%、5%和10%下的VaR分别为0.01855583和0.01910101、0.009955923和0.010282419、0.007279906和0.007355339,有效地反映了在等权重组合策略下,两者的投资组合风险。基于这一结果,投资者可以根据自身风险承受能力,适时调整资产权重配置,直到投资组合的收益达到最优为止。政策制定者可以根据这一结果以及巴塞尔协议相关规定,出台相关政策,进一步完善绿色金融市场监管机制,促进绿色金融发展。
5. 结论
根据我国“十四五”规划中“碳达峰、碳中和”战略目标,发展清洁低碳循环经济是我国经济转型的重要目标之一。在各类政策的支持下,我国绿色金融蓬勃发展。然而,相较于传统金融而言,中国绿色金融的发展仍处于发展阶段,其通过资产定价和资金引流以强化污染防治、促进绿色发展的作用远未充分发挥。基于此,本文研究了绿色金融中的两种金融工具:绿色债券和绿色股票的关联特征及极值风险。研究结果发现,绿色债券和绿色股票具有负向相关关系,因此适合构造投资组合。同时,根据基于极值分布的Copula-GARCH模型,度量了该投资组合未来交易日在99%、95%和90%置信水平下的VaR。研究结果显示,未来两个交易日,由绿色债券指数和可持续发展100指数所构造的投资组合的VaR分别为0.01855583和0.01910101、0.009955923和0.010282419、0.007279906和0.007355339。该模型有效地反映了绿色债券市场和绿色股票市场的联合风险。
基金项目
教育部人文社会科学青年基金项目(17YJC790102)、国家自然科学基金(71701104)、江苏省社科基金一般项目(20GLB008)、江苏省研究生实践创新计划项目(SJCX21_0383)。
参考文献
[1] Sinha, A., Mishra, S., Sharif, A. and Yarovaya. L. (2021) Does Green Financing Help to Improve Environmental & So-cial Responsibility? Designing SDG Framework through Advanced Quantile Modelling. Journal of Environmental Management, 292, Article ID: 112751.
https://doi.org/10.1016/j.jenvman.2021.112751
[2] 陈晓莹. 绿色股票和绿色债券的时变动态关联效应分析[D]: [硕士学位论文]. 南昌: 南昌大学, 2020.
[3] 罗雄. 我国绿色债券与绿色股票市场间联动性及风险溢出效应研究[D]: [硕士学位论文]. 济南: 山东大学, 2020.
[4] 敖蕊. 基于Copula的我国绿色债券市场和证券市场联动关系研究[D]: [硕士学位论文]. 青岛: 中国石油大学, 2020.
[5] 王昊. 绿色债券、绿色股票与其他主要资产联动性研究[J]. 北方经贸, 2022(3): 103-106.